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SPRING FLOW CONTRIBUTION TO THE HEADWATERS
OF THE GUADALUPE RIVER IN WESTERN KERR COUNTY, TEXAS

INTRODUCTION

Three drainage basins in western Kerr County merge to form the upper headwaters
catchment area of the Guadalupe River (Figure 1). Other than surface runoff following
significant precipitation events, water entering the three branches that feed the main stream of
the Guadalupe originates as spring flow. Springs are the natural discharge points of aquifers that
underlie the river drainage area. Projected population and water demand increases in Kerr
County dictate a concern for the long-term preservation of these springs that contribute to the
base flow of the Guadalupe. Also, the spring environments support a rich aquatic habitat that is
a critical component of the local tourist and recreational economy. The purpose of this study is
to demonstrate the groundwater / surface water relationship that exists between the springs, their

host aquifer systems, and the Guadalupe River.

METHODOLOGY

Data used in this study was obtained from a number of sources and incorporated into a
Geographic Information System (GIS). From this data, a base map was generated that depicts
surface geographic data including roads, cities, watercourses, topography, and geology. Stream
gage data from four gauging stations is available from the U.S. Geological Survey (USGS) and
precipitation data for two sites is available from the National Weather Service (NWS). Geologic
coverage is consistent with the Llano and San Antonio Geologic Atlas Sheets published by the
University of Texas at Austin, Bureau of Economic Geology. Locations and accompanying data
for 51 springs were obtained from four sources; (1) Texas Water Development Board Report
102, Ground-Water Resources of Kerr County, (2) a USGS spring database (Heitmuller and
Reece, 2003), (3) locations shown on 7.5 minute USGS topographic maps, and (4) locations

observed from field surveys conducted for this study.
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Fieldwork for this project involved visiting as many springs as possible to verify their
location, appropriate name, general flow conditions, and geologic unit from which the spring
water exits. Most springs are on private property and thus many were not accessible. Because of
wetter than normal rainfall conditions preceding the field survey, there appeared to be
significantly more springs and seeps than are currently recorded. Therefore, a second task was to
measure the streamflow of each tributary at a point below all contributing springs, such that a
combined spring flow within each tributary could be determined. Staff of the Upper Guadalupe
River Authority, Texas Parks and Wildlife Hart of the Hills Fisheries Science Center, and the
Headwaters Groundwater Conservation District proved assistance to the author in accomplishing

the fieldwork and data compilation.

HEADWATERS OF THE GUADALUPE RIVER

The Guadalupe River originates entirely within western Kerr County as three branches of
the river (Johnson Creek, North Fork, and South Fork) merge west of Kerrville to form the main
river course (Figure 2). From there, the river flows eastward through eastern Kerr County and
beyond on its ultimate destination with the Gulf of Mexico. Johnson Creek is the northernmost
of the three river branches and enters the main stream at Ingram. The middle branch, or North
Fork, merges with the South Fork at Hunt and, combined, flow eastward to Ingram where they
are joined by Johnson Creek to form the main stem of the Guadalupe.

A line drawn from the upper northeast corner of Kerr County to the northeast corner of
Real County roughly divides surface drainage, with precipitation runoff northwest of the divide
flowing to the Colorado River drainage basin and flows to the southeast contained within the
Guadalupe drainage basin. A southern topographic divide occurs approximately along the
southern Kerr — northern Bandera county line and separates surface drainage between the

Guadalupe to the north and the Medina of the San Antonio River Basin to the south.
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Likewise, each of the three Guadalupe branches can be subdivided into drainage basins
(Figure 3). The importance of recognizing these separate drainage basins is that shallow
groundwater underlying each of the basins also tends to move toward and exit the aquifer system

through springs located within the same surface drainage basin.

TRAVERSE OF STREAMBEDS OVER GEOLOGIC FORMATIONS

Surface flow in the three branches and their contributing tributaries begins at higher
elevation on the Edwards Plateau. The Buda Limestone, which elsewhere overlies the Edwards,
caps only the highest elevations on the far western edge of the Guadalupe drainage basin. The
geologic rock units over which the branches of the Guadalupe traverse include, in descending
order, the Segovia and Fort Terrett members of the Edwards Formation and the Upper Glen Rose
Limestone of the Trinity Group (Figures 4 and 5). Limestone beds of the Segovia member crop
out at the highest land surface elevation (2,300 feet above mean sea level) and form the divides
that separate the individual basins. Precipitation runoff moves rapidly down gradient from the
highlands, eroding small steam beds that will eventually coalesce into the major channels of the
three Guadalupe branches. As the surface water gravity flows to the east, the riverbed
continuously erodes deeper into the Edwards limestone creating along the way spectacular
canyons and relatively narrow floodplains.

The main streambeds begin to make their westernmost appearance over the Fort Terrett at
an approximate elevation of 2,100 feet. Within a downstream distance of approximately five
miles the streambeds have incised steep canyons through the Fort Terrett and have exposed the
underlying limestone beds of the Upper Glen Rose (1,900 feet). From this point onward, the
floodplains widen relative to the upstream canyons as they spread out over Glen Rose limestone

outcrop.
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A variable thickness of gravel often accumulates in the streambeds where flow velocities
are at their weakest. During low-flow conditions, a significant amount of flow is likely
occurring through the gravel sections even though water is not visible at the surface. Pools of
water may be visible in sections of the streambed where bedrock is exposed, but may reenter a
gravel section within a short distance (Figure 6).

Individual Edwards Formation beds are highly fractured and permeable thus allowing
precipitation to rapidly infiltrate downward to the groundwater table. The underlying Glen Rose
limestone contains more clay, is less subject to fracturing, and therefore acts as a semi-
impermeable barrier to further downward groundwater migration. Unable to migrate easily
downward into the Glen Rose, much of the groundwater in the Edwards aquifer preferentially
moves laterally until it escapes its underground confinement and flows back to the land surface

through springs and seeps.

EDWARDS AQUIFER WATER LEVEL

All springs contributing to the three river branches appear to issue from various horizons
within the Edwards Formation. Therefore, water levels within the Edwards Formation part of the
aquifer system are an integral factor in determining where springs are possible and how
sustainable there flow might be. Water-level data is lacking in this area due to its remoteness
and limited wells that provide access to the aquifer. For the purpose of this study, an historical
potentiometric (water level) map generated by Bush and others (1993) (Figure 7) was used to
establish flow direction and saturated thickness. Staff of the Headwaters Groundwater
Conservation District measured water levels in a few accessible wells that verified the general
accuracy of the map.

The water level elevation in the Edwards is at its highest (2,000+ feet) in southwestern
Kerr and northern Real counties. In this area, the saturated thickness of the Edwards ranges from
100 to 150 feet. From there, the water-level elevation declines to between 1,800 and 1,900 feet
within the general area where most of the springs occur. This equates to a west-to-east hydraulic

gradient of approximately 15 feet per mile. The water-level elevation in the vicinity of most of

10



Stream flow visible where bedrock is exposed in primarily a gravel
covered segment of Dry Branch, a tributary of Johnson Creek.

GRAVEL SEGMENTS FIGURE 6
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the springs is approximately 1,900 feet, which is generally the elevation of the contact between
the Edwards and the underlying Glen Rose (Figure 5). This suggests that the springs rapidly
dewater the aquifer at their locations and thus the saturated thickness approaches zero.
Significantly more water level measurements from additional well sites are needed to establish

more detailed water-level elevation, saturated thickness, and flow direction maps.

STREAM FLOW GAGE MEASUREMENTS

The topography and shallow soils of western Kerr County are conducive to rapid runoff
following significant precipitation events resulting in short-term elevated river flows. The
cessation of runoff eventually returns the river to a base flow condition. These events can be
observed in the continuous-flow hydrographs generated from data obtained from the four USGS
gaging stations and two NWS precipitation stations (Figure 8). Source water contributing to
base flow is primarily generated from the many springs that feed the tributaries to the river. The

volumetric contribution of these springs is discussed in the following sections.

SPRINGS

The principal consideration in this study is the physical location of springs, their
relationship to specific geologic formations, and their contribution to the base flow of the
Guadalupe River. Figure 9 shows the location of 51 currently recognized springs in western
Kerr County including those shown on USGS 7.5 minute topographic maps and those listed in
USGS and TWDB databases. Table 1 lists these springs and the associated tributary basins in
which they occur. It became quite apparent after visiting a number of reported spring sites that
in most cases the location contains numerous springs rather than a single outlet. It is also
apparent that, especially during wetter periods, there are many more springs in existence than
may have been previously reported.

14
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Springs in western Kerr County occur where the saturated portion of the underlying
aquifer is exposed at the land surface. This generally occurs where a streambed has eroded deep
into the surrounding landscape. In western Kerr County, water in the form of precipitation enters
the Edwards Formation at higher elevation and migrates downward through fractures to the
saturated zone or aquifer. When this groundwater reaches a less permeable zone, such as the
Glen Rose, the groundwater moves laterally until it emerges at the land surface in the form of
spring flow (Figure 5). The excellent water quality (low TDS) of the spring water testifies to the
relatively short time period in which the groundwater has been in transition from percolating
rainfall to its exit as spring flow.

As is to be expected, the majority of springs are encountered where the river branches
have exposed the contact between the Glen Rose and the overlying Edwards. Flows generally
emerge from rock crevices at or near the base of the Edwards Formation. Figure 10 shows an
Edwards-Glen Rose contact location in the Johnson Creek basin that is now above the water
table, but historically had witnessed significant flow as seen by the preserved cavernous rock
layer. This geologic contact is shown in Figures 4 and 5 where the lighter green color
representing the Fort Terrett is juxtaposed against the medium green color representing the Glen
Rose.

Fewer springs occur and tributary flows are less or non-existent in the higher elevations
of the far western reaches of the three main drainage basins. In this area, the aquifer water table
is over 100 feet below the land surface. The few springs that do occur at the higher elevations in
the far western extent of the North Fork basin, issue from higher in the Edwards section near the

top of the Fort Terrett member.
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PERMEABLE CONTACT BETWEEN THE EDWARDS LIMESTONE FIGURE 10
AND THE UNDERLYING GLEN ROSE LIMESTONE
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The volumetric rate of flow from each spring is primarily a factor of its physical
connection (or conduit) with the contributing aquifer, the size of the contributing area up
gradient of the spring, and the water level in the aquifer as affected by recent recharge
(precipitation) events. The previous four months prior to visiting the springs were wetter than
normal, thus spring flows were at their maximum and some springs were flowing that only
occasionally flow. Flow rates of individual spring complexes vary from mere seeps to over 16
cubic feet per second (cfs). The largest springs observed were Ellebracht Spring on the

Fessenden Branch of Johnson Creek and the Headwaters Springs on the North Fork (Figure 11).

TRIBUTARY FLOWS

Because of the lack of access to all springs and the wetter than normal conditions, it was
determined not to measure flows in individual springs but rather to measure the accumulated
flow of all springs in each tributary (Table 2). Figure 12 shows the location of each of these
measuring sites. In this manner, it is possible to compare the relative contribution of each
tributary grouped spring system to the overall flow in each river branch.

The tributary with the greatest measured flow in the Johnson Creek basin was Fessenden
Branch, which is supplied from Ellebracht Spring and the Zock Springs complex. A portion of
the flow from Ellebracht Spring is channeled through an aqueduct to the Texas Parks and
Wildlife Hart of the Hills Fisheries Research Center.

The greatest flow contribution to the North Fork is derived from the Headwaters Springs
complex located near the headquarters of the Kerr State Wildlife Management Area. These
moderately large springs are situated on the banks of both sides of the river and are, therefore,
not assigned to specific tributaries. A combined flow of the North Fork downstream from the

Headwaters Springs was measured at 31.38 cfs.
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B. Headwaters Springs (numerous outlets)

ELLEBRACHT SPRING AND HEADWATERS SPRINGS FIGURE 11
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TABLE 2. TRIBUTARY FLOW MEASUREMENTS

JOHNSON CREEK

Map ID No. Tributary Flow (cfs) Date
1 Welch Branch 2.71 12/14/2004
Spring Creek
2 North Shelton crossing 3.04 12/14/2004
3 South Shelton crossing 0.53 12/14/2004
Fessenden Branch
4 TP&W aquaduct 7.1 12/14/2004
5 Main stream 9.46 12/14/2004
6 Byas Branch 2.5 (est.) 12/14/2004
7 Dry Branch 0.78 12/14/2004
8 Fall Branch 1.03 12/14/2004
9 Henderson Branch 3.5 12/14/2004
NORTH FORK AND MAIN BRANCH
Map ID No. Tributary Flow (cfs) Date
10 Headquarters Springs 20.0+ (est.) 12/21/2004
11 Bee Cave Creek 0.54 12/21/2004
Bear Creek
12 Bear Creek upper 3.29 12/21/2004
13 BSA spring on Bear Creek 0.52 12/21/2004
14 Honey Creek 4.86 12/14/2004
15 Tegener Creek 1.32 12/14/2004
16 Kelley Creek 3.07 12/14/2004
SOUTH FORK
Map ID No. Tributary Flow (cfs) Date
17 Sycamore Draw / Lynxhaven Springs 10+ (est.) 12/21/2004
18 Panther Creek 1.25 12/21/2004
19 Cypress Creek at Camp Mystic 4.33 12/21/2004
20 Edmunds Creek at Camp Mystic 0.18 12/21/2004
21 Lange Ravine 0.56 12/21/2004
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A flow of 27.4 cfs was measured on the South Fork at the Lynxhaven crossing. A half-
mile upstream, no flow was observed in the streambed, however the streambed at this location
contained a thick accumulation of gravel. Therefore, the quantity of flow measured at the
Lynxhaven crossing is likely a combination of underflow in the upstream gravels and springs
located on Sycamore Creek and the Lynxhaven property river frontage.

With contributions of tributary flow along the course of each branch, it would seem
reasonable that stream gages would record increasing flows in the downstream direction (Table
3) and Figure 13. However, this is only apparent on Johnson Creek. River flow on the North
Fork was greater near the Headwaters Springs than downstream near the confluence with Bear
Creek. Likewise, on the South Fork, river flow at the Lynxhaven crossing is almost identical to
flow at the terminus of the branch near Hunt, thus negating any tributary inflow between the two
points. Underflow in streambed gravels along certain reaches of the rivers may contain the
unaccounted flow volume.

A similar tributary contribution (base-flow) survey was performed by the USGS in 1965
(Kunze and Smith, 1966). Based on this study which was performed following drier conditions,
the authors estimated that approximately 90 percent of the Guadalupe River base flow through its
entire reach in Kerr County is contributed from springs issuing from the Edwards Formation and
only 10 percent from Glen Rose springs. Under wetter conditions, the Edwards contribution is
likely higher.
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TABLE 3. MAIN STREAM FLOW MEASUREMENTS

JOHNSON CREEK

Measurement Site Flow (cfs) Date
USGS 8166000 Johnson Creek above Ingram 28 12/14-21/2004
Johnson Creek at Shelton Dam 13.8 12/14/2004

NORTH FORK AND MAIN BRANCH

Measurement Site Flow (cfs) Date
USGS 8165300 North Fork above Hunt 28 12/14-21/2004
USGS 8165500 Main Branch below Hunt 63 12/14-21/2004
River crossing at Rocky Bottom Road 31.38 12/21/2004

SOUTH FORK

Measurement Site Flow (cfs) Date
River crossing at Lynxhaven 27.4 12/21/2004
River crossing 0.5 miles above Lynxhaven crossing 0 12/21/2004
River crossing under Hwy 39 bridge 27.01 12/14/2004

GUADALUPE RIVER BELOW BRANCHES

Measurement Site Flow (cfs) Date
USGS 8166140 Main Stream at Bear Creek above Kerrville 123 12/14-21/2004
USGS 8166200 Main Stream at Kerrville 110 12/14-21/2004




CONCLUSIONS

Base flow in the three branches of the upper Guadalupe River is derived from the many
springs that occur within the branch tributaries. These springs represent outflow from the
underlying groundwater system, and thus provide the direct link that connects groundwater to
surface water. Aquifer management is thus a critical step in the overall protection of both the
groundwater and surface water resources in western Kerr County.

Tributary flow measurements provide insight into the overall contribution of springs
without having to measure flow in each individual spring. Figure 12 illustrates those tributary
sub-basins that contribute the most to flow in the three upper Guadalupe branches. However, it
should not be assumed that protection of springs by restricting groundwater development only in
these preferred sub-basins would insure continued base flow in the river. The groundwater
system that feeds the springs is not restricted to the individual sub-basins, but rather is a much
larger system from which each spring-fed tributary receives a portion. While it may be
important to restrict groundwater withdrawals in the near vicinity of springs in order to maintain
their flow, it is also important to guard against overdevelopment of the entire contributing

aquifer system.
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